84 research outputs found

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    Accuracy of parameter estimation of gravitational waves with LISA

    Get PDF
    LISA is a space-borne, laser-interferometric gravitational-wave detector currently under study by the European Space Agency. We give a brief introduction about the main features of the detector, concentrating on its one-year orbital motion around the Sun. We compute how the amplitude as well as the phase of a gravitational wave are modulated due to this motion by transforming an arbitrary gravitational-wave signal in a reference frame that is rigidly fixed to the arms of the detector. To see how LISA works the detector response to a gravitational wave which is purely monochromatic in the barycentric frame will be discussed. A brief review of the theory of parameter estimation, based on the work of Finn and Cutler, will be given. Following this theory the detection of a gravitational-wave signal buried in detector noise was simulated numerically. We interpret the results of this simulation to determine the angular resolution of LISA

    Polarization resolution of LISA

    Get PDF
    LISA is a spaceborne laser interferometer for the detection and observation of gravitational waves, currently under study by ESA. A brief introduction of the main features of this detector, concentrating on its one-year orbital motion around the Sun is given. The amplitude as well as the phase of a gravitational wave is modulated due to that motion, allowing us to extract information from the signal. The detection of monochromatic gravitational waves based on the well-known signal detection theory is simulated, focusing on estimating the angular parameters of the source. The results of the semi-analytic calculations give the angular resolution of LISA

    Measuring a binary's orientation with LISA

    Get PDF
    We are presenting numerical results concerning LISA's ability to distinguish between different polarizational states of a gravitational wave. Therefore, we assume a binary as a source of a gravitational wave, finding its orientation which determines the polarization of the gravitational wave. By means of signal processing, we are able to give the 1σ-uncertainty for determining the orientation of the source

    Pressure-dependent optical investigations of α\alpha-(BEDT-TTF)2_2I3_3: tuning charge order and narrow gap towards a Dirac semimetal

    Full text link
    Infrared optical investigations of α\alpha-(BEDT-TTF)2_2I3_3 have been performed in the spectral range from 80 to 8000~cm−1^{-1} down to temperatures as low as 10~K by applying hydrostatic pressure. In the metallic state, T>135T > 135~K, we observe a 50\% increase in the Drude contribution as well as the mid-infrared band due to the growing intermolecular orbital overlap with pressure up to 11~kbar. In the ordered state, T<TCOT<T_{\rm CO}, we extract how the electronic charge per molecule varies with temperature and pressure: Transport and optical studies demonstrate that charge order and metal-insulator transition coincide and consistently yield a linear decrease of the transition temperature TCOT_{\rm CO} by 8−98-9~K/kbar. The charge disproportionation Δρ\Delta\rho diminishes by 0.017 e0.017~e/kbar and the optical gap Δ\Delta between the bands decreases with pressure by -47~cm−1^{-1}/kbar. In our high-pressure and low-temperature experiments, we do observe contributions from the massive charge carriers as well as from massless Dirac electrons to the low-frequency optical conductivity, however, without being able to disentangle them unambiguously.Comment: 13 pages, 17 figures, submitted to Phys. Rev.

    Characterization of the quasi-one-dimensional compounds ÎŽ-(EDT-TTF-CONMe2)2X, X=AsF6 and Br by vibrational spectroscopy and density functional theory calculations

    Get PDF
    We have investigated the infrared spectra of the quarter-filled charge-ordered insulators delta-(EDT-TTF-CONMe2)(2)X (X=AsF6, Br) along all three crystallographic directions in the temperature range from 300 to 10 K. DFT-assisted normal mode analysis of the neutral and ionic EDT-TTF-CONMe2 molecule allows us to assign the experimentally observed intramolecular modes and to obtain relevant information on the charge ordering and intramolecular interactions. From frequencies of charge-sensitive vibrations we deduce that the charge-ordered state is already present at room temperature and does not change on cooling, in agreement with previous NMR measurements. The spectra taken along the stacking direction clearly show features of vibrational overtones excited due to the anharmonic electronic molecule potential caused by the large charge disproportionation between the molecular sites. The shift of certain vibrational modes indicates the onset of the structural transition below 200 K. (C) 2014 AIP Publishing LLC

    Anisotropic charge dynamics in the quantum spin-liquid candidate Îș\kappa-(BEDT-TTF)2_2Cu2_2(CN)3_3

    Get PDF
    We have in detail characterized the anisotropic charge response of the dimer Mott insulator Îș\kappa-(BEDT-TTF)2_2\-Cu2_2(CN)3_3 by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and close to the value expected from stoichiometry; the temperature behavior follows the dc resistivity ρ(T)\rho(T). Within the planes the dc conductivity is well described by variable-range hopping in two dimensions; this model, however, fails for the out-of-plane direction. An unusually broad in-plane dielectric relaxation is detected below about 60 K; it slows down much faster than the dc conductivity following an Arrhenius law. At around 17 K we can identify a pronounced dielectric anomaly concomitantly with anomalous features in the mean relaxation time and spectral broadening. The out-of-plane relaxation, on the other hand, shows a much weaker dielectric anomaly; it closely follows the temperature behavior of the respective dc resistivity. At lower temperatures, the dielectric constant becomes smaller both within and perpendicular to the planes; also the relaxation levels off. The observed behavior bears features of relaxor-like ferroelectricity. Because heterogeneities impede its long-range development, only a weak tunneling-like dynamics persists at low temperatures. We suggest that the random potential and domain structure gradually emerge due to the coupling to the anion network.Comment: 14 pages, 13 figure

    The information content of gravitational wave harmonics in compact binary inspiral

    Get PDF
    The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics. We use an order (4/2) post-Newtonian expansion of the gravitational wave waveform of a binary system to model the signal seen in a spaceborne gravitational wave detector such as the proposed LISA detector. Covariance studies are then performed to determine the ultimate accuracy to be expected when the parameters of the source are fit to the received signal. We find three areas where the higher harmonics contribute crucial information that breaks degeneracies in the model and allows otherwise badly-correlated parameters to be separated and determined. First, we find that the position of a coalescing massive black hole binary in an ecliptic plane detector, such as OMEGA, is well-determined with the help of these harmonics. Second, we find that the individual masses of the stars in a chirping neutron star binary can be separated because of the mass dependence of the harmonic contributions to the wave. Finally, we note that supermassive black hole binaries, whose frequencies are too low to be seen in the detector sensitivity window for long, may still have their masses, distances, and positions determined since the information content of the higher harmonics compensates for the information lost when the orbit-induced modulation of the signal does not last long enough to be apparent in the data.Comment: 13 pages, 5 figure
    • 

    corecore